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THE DISSIPATION RATE TRANSPORT EQUATION

AND SUBGRID-SCALE MODELS IN ROTATING TURBULENCE*

ROBERT RUBINSTEIN t AND YE ZHOU$

Abstract. The dissipation rate transport equation remains the most uncertain part of turbulence mod-

eling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional

analysis from determining the correct form of the modelled equation. In this work, the dissipation rate

transport equation and subgrid scale models for rotating turbulence are derived from an analytical statisti-

cal theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state

in which the inertial range energy spectrum scales as k -2 and the turbulent time scale is the inverse rotation

rate. This scaling has been derived previously by heuristic arguments.

Key words. Dissipation rate transport equation, subgrid scale modcls, rotating turbulence

Subject classification. Fluid Mechanics

1. Introduction. Kraichnan's (1959) Direct Interaction Approximation (DIA) and related Lagrangian

closures (Kraichnan, 1964; Kaneda, 1968) remain the only fully deductive turbulence theories. Although a

study of a simple inhomogeneous flow, like channel flow, using these closures would bc of the greatest theo-

retical and practical interest, the complexity of the calculations required has precluded any but preliminary

results (Danncvik, 1992).

Practical application of DIA therefore requires some compromise of rigor in the interest of utility. The

most comprehensive attempt to extract turbulence models from DIA remains the two-scale theory (TSDIA)

of Yoshizawa (1984, 1996) in which inhomogeneity, anisotropy, and time-dependent nonequilibrium effects

are introduced by perturbing about a state of homogeneous, isotropic, stationary turbulence.

Yoshizawa's procedure leads to formulas for quantities familiar in single point phenomenological turbu-

lence closures like the two-equation model. A typical result (Yoshizawa, 1984) is the expression for eddy

viscosity

(1) _, = _-_ dk dr G(k, T)Q(k, r)

in terms of the DIA descriptors (Kraiehnan, 1959) of isotropic turbulence: the response function G(k, r)

and correlation function Q(k, _-). The isotropy of the lowest order field implies that these descriptors are

scalars, homogeneity permits introduction of the wave-vector argument k, and stationarity in time makes

them functions of time difference r only. Yoshizawa (1984) shows how the familiar eddy viscosity formula

of single-point turbulence modeling is deduced from this formula, by substituting Kolmogorov scaling forms

for G and Q. As is well-known, Kolmogorov scaling describes the simplest turbulent steady state with a

constant flux of kinetic energy from the large to the small scales.

2. DIA for Rotating Turbulence. Eq. (1) suggests that an eddy viscosity for turbulence subject to

any external agency can be derived, provided that appropriate formulas for G and Q are known. Rotation
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is a particularly simple external effect, since the energy remains an inviscid invariant under rotation, and a

steady state with constant energy flux remains possible. But Kolmogorov scaling may no longer apply to

this stcady state and the occurence of a distinguished time scale precludes the deduction of the applicable

scaling law by dimensional analysis. To deduce the scaling, we will appeal to closure in the form of the direct

interaction approximation.

For rotating turbulence, the DIA equations of motion take the form

00(k, t, s) + 2Pip(k)f_pqGqj(k, t, s)

(2) + dr _ip(k,t,r)Gvj(k,r,s) = 0

_)i/(k, t, s) + 2P_p(k)flpqQqj(k, t, s)

+ dr _ip(k,t,r)Qp3(k,r,s)

(3) = dr G_p(k,t,r)Fpj(k,s,r)

where the eddy damping _ and forcing F are defined by

s) = f dpdqPimn(k)Pur s (p) x_(k, t,
Jk =p+q

(4) Gmu(p,t,s)Qns(q,t,s)

= ] dpdqPi,,_n(k)Pjrs(k) xFij(k,t,s)
Jk =p+q

(5) Qn_ (p, t, s)Qm_(q,t, s)

In Eqs. (4) and (5),

Pim,_(k) = kmPin(k) + k_Pim(k)

Pim(k) = _i,_ - k-2kikm

and _pq is the antisymmctric rotation matrix. The solution of these equations in complete generality is

not known. A useful simplification, EDQNM, effectively replaces the response equation Eq. (2) by a

phenomenological hypothesis, and solves a simplified, Markovianizcd version of the correlation equation Eq.

(3) (Cambon and Jacquin, 1986).

A perturbative solution of these equations is suggested by Leslie's (1972) treatment of shear turbulence:

treat the rotation terms as small, and perturb about an isotropic turbulent state. This approach is adopted

by Shimomura and Yoshizawa (1986) who derive a TSDIA theory in which both inhomogeneity and rotation

are described by small parameters.

A complementary limit is also of interest. Namely, in the response equation, balance the time derivative

by the rotation term, and treat the eddy damping as small. This linear theory of the response equation

treats strongly rotating turbulence as a case of weak turbulence (Zakharov et al, 1992) in which nonlinear

decorrelation of Fourier modes is dominated by linear dispersive decorrelation (Walcffe, 1993). The result is

conveniently expressed in terms of the Craya-Herring basis

e(X)(k) -- kxfl/[ k×n I

e(2)(k) --- k×(k×f/)/I k×(kxft) I



or theequivalentbasisofCambon and Jacquin

(8)

Note that _ia = p/j (k).

(1989), and the corresponding tensors

_i_= _(i)_(2) (i)(2)_i _j +ej ei

_?j= _(1)_(I) (2) (2)_i cj --e i ej

_, (1) (1) (2) (2): ei ej + e i ej

(r)

The leading order solution of Eq. (2), obtained by dropping the eddy damping term, is

Gij (k, t, s) = {cos(k. n(t - s)/k)Pij(k)

+ sin(k. _(t - ,)/k)_°a (k)}H(t - s)

where H is the unit step function. Let us adopt the fluctuation-dissipation hypothesis relating the two-time

correlation function to the response function and single-time correlation function

(s) Qij(k, t, s) = Gim(k, t, s)Qm3 (k) + Gjm(k, s, t)Qmi(k)

Conditions under which this approximation is reasonable are discussed by Woodruff (1992). Substituting

Eqs. (7) and (8) in Eq. (3) shows that the single-time correlation function must take the general form

containing all of the { tcnsors of gq. (6)

(9) Qij (k) = _ VP(k)_ p (k)

which is equivalent to the form of the correlation function noted by Cambon and 3acquin (1989).

The DIA inertiM range energy balance (Kraichnan, 1971), which states that a steady state with constant

energy flux exists, is

/7s = [I+ - I-]Pimn(k) dr 2Pv_s(p)Gm_,(p,r)Qn,(q,r)Qt_(k,r)

(10) - P, rs (k) Gij (k, w)Qns (p, r) Qmr (q, r)

where the integration operators in Eq. (10) are defined by

I+ (k°) : _>__o dk _=p+q;p,q<ko dpdq_

I- (k°) = _<_ko dk _=p+q;p,q>_o dpdq

and r = t - s denotes time difference. The time integrals in Eq. (10) will take the form

(11)

where

O(k, p, q) : [_-16(+p • _/pf_ + q . n/qf_ + k . n/kf_)

Thus, wave-vector integrations take place over resonant triads only (Waleffe, 1993) and these integrals scale

as _-1 (Zhou, 1995).



Introducethe ansatz

(12) QP(k) = k-O- 2 fp(k, f_ . k/ka)

for the functions in Eq. (9). In Eq. (12), fP is homogeneous of degree zero in k. In view of Eq. (11), the

energy balance Eq. (10) requires c_ = 2, as in the heuristic argument of Zhou (1995). The goal of this work

is a two-equation model of the standard form. Accordingly, wc only attempt to quantify the overall effect of

rotation on turbulent energy transfer, ignoring the polarization of turbulence (Cambon and Jacquin, 1989)

by rotation and the distribution of energy in k space. For this purpose, it suffices to replace the anisotropic

energy spectrum tensor by the energy transfer-equivalent isotropic spectrum given by Zhou (1995),

(13) E(k) ,,, v/_k -2

It is of interest to exhibit the eddy damping correction to the leading order results represented by Eqs.

(7) and (13). Namely, substituting these results in Eq. (4) for the eddy damping factor,

(14) ks dp ~ kv'T/a

The corrections to the time scale and energy spectrum have the form

1 {1 + O(f_-a/2)} -10~_

(15) g --_ v/_k-2{1 + O((k2e/f_a) 1/2}

The low rotation rate expansion of Shimomura and Yoshizawa (1986) gives the complementary expansions

in positive powers of _,

(16)

o ~ e-_/3k-2/3{1 + o(_)}

E ,._ e2/3k-5/a{1 + O(f_/el/3k 2/3}

The expansions in Eqs. (15) and (16) could be consolidated into Pad6 approximations for the energy spectrum

and decorrelation time applicable for intermediate rotation rates.

2.1. Locality of energy transfer. The scaling law of Eq. (13) is purely formal: to prove that a

steady state scales this way, the convergence of the integral in Eq. (10) must be dcmonstrated. Divergence

would imply strong dependence on the cutoff at large or small scales, and would therefore alter the scaling

law (Kraichnan, 1959). Even if the dependence of E(k) on f_1/2 is known, Eq. (13) cannot be asserted on

dimensional grounds: dimensional analysis assumes that k -1 is the only rclevant length scalc; it thereforc

postulates the locality which convergence of the flux integral proves.

Howcver, it is not difficult to prove that the flux integral does in fact converge when evaluated for an

infinite k -2 inertial range. The proof only requires the transverse character of the tensors (P and does not

differ conceptually from the proof originally given by Kraichnan (1959). Accordingly, we can assert the

locality of energy transfer in a rotating inertial range and can apply the scaling laws of Eq. (15) to develop

turbulence models.

3. Subgrid-Scale Models. Since the lowest order field in TSDIA is arbitrary, the transport properties

of weakly strained strongly rotating turbulence can be derived by perturbing about the steady rotating

turbulent state just described instead of perturbing about a Kolmogorov steady state. In carrying out this



program,it shouldbestressedthat formulaslikeEq. (1) fortheeddyviscosityarctheresultof evaluating
anintegraloverinteractingtriadswhichsatisfyaresonancecondition.Thisconditionprovidesanadditional
sourceofanisotropyin theexacttheoryofrotatingturbulence,sinceonlytwo-dimensionaltriadsforwhich

k. 12= p. l"_= q. 1"2= 0

satisfytheresonanceconditionautomatically.However,sinceourgoalis to evaluatetheover-alleffectof
rotationonturbulentenergetics,wewill evaluatetheeddyviscosityintegralusingtheisotropicexpressions
ofEq. (15).

Thesimplestwayto derivea sub-gridscaleviscosityfromEq. (1) is to integrateonlyoverscales
satisfyingk > 2_r/A, where A denotes the filter width. It follows from substitution of Eq. (15) in Eq. (1)

that in strongly rotating turbulence, to leading order

(17) v = C_Av/_/f_

where A is the filter size. Corrections for finite rotation rates arc suggested by Eq. (15). Setting A equal to

the integral scale of turbulence leads to the single point result

K
(18) , ,_ --

f_

A subgrid scale model is derived by eliminating the dissipation rate from Eq. (17). We follow thc

derivation of the Smagorinsky model by equating the dissipation rate to the resolved production:

1

(19) _ = _vS,jSij

where S2 = SijSij/2 and Sij isthe resolvedstrainrate.Therefore,

(20) = c2

Solving Eq. (20) for e and substituting in Eq. (17),

(21) v---- (cn_ 2s=A2

which isthe Smagorinsky model forstronglyrotatingturbulence.

This calculation supplements the evaluation by Shimomura and Yoshizawa (1986) of the sub-grid scale

viscosity in weakly rotating turbulence. But the effect of rotation becomes weaker with decreasing scale size;

accordingly, the weak rotation correction of Shimomura and Yoshizawa may be appropriate even in some

rapidly rotating flows.

Additional production and dissipation mechanisms are often modeled by Richardson number modifica-

tions of the subgrid-scale viscosity. Thus, if the energy balance at the grid scale is written as

(22) uS2(1 - Rit) = c

where Rit denotes an appropriate turbulent Richardson number, and Kolmogorov scaling

(23) u : Cel/3A 4/3

can be assumed, then Eqs. (22) and (23) give

(24) u ----C3/2A2Sv _- Rit



If strong rotation is also present, as in a rotating buoyant flow, Eqs. (17), (18), and (22) imply

2 $2A2
(25) v = (C_) _(1 - Rit)

Note the difference between the Richardson number dependence in Eq. (24), corresponding to no rota-

tion, and in Eq. (25), corresponding to strong rotation. Eq. (25) predicts that stabilization by Richardson

number effects is enhanced by rotation, but that destabilizing Richardson number effects are also enhanced

by rotation. The second prediction should be tested in numerical simulations.

Centrifugal instability is another external agency which has often been treated (Bradshaw, 1969) by

Richardson number modifications of turbulence models. A representative proposal (Launder et al, 1977),

applicable to flows in which the mean velocity field has circular streamlines

uT = uz = O,uo = U(r)

is

(26) Ri,=cR(K)2U o-_(rU)

where r denotes distance to the rotation axis and _ + U(r)/r is the total mean angular velocity. In Eq.

(26), the velocity U should be understood as the velocity relative to the rotation axis: this identification

maintains the Galilean invariance of the theory. For a subgrid model, it is appropriate to take the turbulent

frequency scale proportional to the resolved strain rate. With this modification, the turbulent Richardson

number of Eq. (26) becomes

UO
(27) hi, = C'RS - 2-_ _ (rV)

Any part of the mean velocity which corresponds to rigid rotation must be included in _; equivalently, we

assume that 02V/Or 2 is nonzero.

Using the formulas for mean vorticity

OU U 1 0(
= -_- + -r = r- Or rV)

and mean strain rate

__ ou u o (u.
or -i - r _r r )

we can replace Eq. (27) by the explicitly Galilean-invariant expression

(28) Ri, = ½C'RS-2_V(W - _)

The definition of Rit in Eq. (28) can be substituted in Eq. (25) to provide a subgrid model suitable

for rotating channel flow or for the problem of rotating Kolmogorov flow recently simulated by Shimomura

(1995).

We emphasize that in this treatment of external agencies, Richardson number effects are always production-

related; they never modify the dissipation rate. Moreoever, stabilization by rotation always corresponds to a

decrease in the energy transfer by turbulence, hence to a decrease in dissipation rate. A different viewpoint

is sometimes advanced in engineering modeling: see for example, the survey of models of this type by Rodi

and Scheuerer (1983).



4. The Dissipation Rate Transport Equation. Our earlier work (Rubinstein and Zhou, 1996)

attempts to implement Leslie's (1972) suggestion that the dissipation rate transport equation be derived

from the expression Eq. (10) for energy transfer into the inertial range. A complete treatment would require

TSDIA in order to evaluate the essentially inhomogeneous diffusion effects. The present account will be

limited to thc production and destruction terms, which are amenable to a homogeneous theory.

The starting point is then the DIA equations Eqs. (2)-(3) in which the strain rate term

s_m(t) = ov. oup ____
Oxm 2k-2k_kp oxrn + 5imk80Us 0Ox_ Ok_

is added to the rotation term. Differentiating the time dependent form of Eq. (10) with respect to time, and

assuming stationarity of the lowest order TSDIA field,

= [I+ - I-]Pim,(k){P,_(p)Qns(q)Q,_(k)

Pi_8(k)Qn_(p)Qm_(q) + f t ds[

P_,rs(p)Gm_,(p, t, s)Qns(q, t, s)Qir (k, t, s)

- Pj_ (k)Gij (k, t, s)Q,_ (p, t, s)Qm_(q, t, s)

+ P,_ (p)Gm, (p, t, s)Q,_ (q, t, s)Qir (k, t, s)

- Pj_(k)Gij(k, t, s)Qn_ (p, t, s)Qm_(q, t, s)

+ Pu_s(p)Gmu(P, t, s)Qns(q, t, s)Oi_ (k, t, s)

(29) - Pjrs(k)Gij(k, t, s)Q,_ (p, t, s)Om_(q, t, s)]}

The time-dependent form of this equation might be of interest in the context of non-equilibrium turbulence

modeling. Note that the first two terms, distinguished by the absence of any time integration, arise from a

quasi-normal hypothesis. The remaining terms are corrections due to DIA.

We follow the program outlined before: to find the dissipation rate transport equation in weakly rotating

turbulence, we will substitute Kolmogorov scaling forms for the descriptors G and Q; to find this transport

equation in strongly rotating turbulence, we will substitute descriptors appropriate to strong rotation.

4.1. The destruction term. The destruction terms D_ are those which are independent of strain.

Consider first the destruction term in non-rotating turbulence. The quasi-normal terms can be shown

(Rubinstcin and Zhou, 1996) to contribute

(30) De = -C_2-_

when expressed in terms of single-point quantities. The most important conclusion is that the integral

which leads to Eq. (30) is convergent in the large k limit. This implies that there is no Reynolds number

dependence in the destruction term. The remaining terms in Eq. (29) lead to the same result. The third

term, for example, has the form

[I+ - I- ]rl(p)O(k, p, q)P(k)P(p)Q(q)Q(k )

Since the combination _?O is homogeneous of degree zero, the integral remains convergent, and the form Eq.

(30) again follows.

To evaluate the destruction term in strongly rotating turbulence, we observe first that the terms of

lowest order in _ are the quasi-normal terms which we have already analyzed (Rubinstein and Zhou, 1996).



Substitutingtheenergyspectrumwith thescalingof Eq.(15)in theseterms,thereresults

(31) D_ = -C_E Jill

The constant C_ is expressed as a convergent intcgral. The result of Eq. (31) agrees in the strong rotation

limit with the rotation correction proposed by Bardina et al (1985). Dimensional analysis obviously cannot

predict this limit, and other limits for D_ have been proposed. The result Eq. (31) is consistent with

Aupoix's (1987) finding that the stability of rotating decaying turbulencc requires

D_-I_I _ with a<2

4.2. The production term. The production terms P_ depend on the mean velocity gradicnt. Begin-

ning again with turbulence without rotation, we find at once that there can be no production of dissipation

rate without weak breaking of the isotropy of small scales (Xu and Spezialc, 1996). This weak anisotropy

is introduced using Leslie's (1972) perturbative DIA theory of shear turbulence. Expanding thc single time

corrclation function in a power series in the strain rate,

(1)
Qij (k, t) = Q_O)(k, t) + Qij (k, t) +---

where Q(0) is the correlation function of isotropic turbulence and setting Gij = G_°) the response function

of isotropic turbulence, Lcslic found

(1) it OU_ _ 20Up_,_(o)( kQ,j (k,t) = Jo ds{ G(°)(k,t,s)(--_x r + 2kikpk- -O-_x)wrj _ ,t,s)

Ouj -20Up (o)
+ G(°)(k,t,s)(--_x _ + 2kjkpk -_x)Qr_ (k,t,s)

+ G (°)(k, t, s)kr OUr 0 o!?)(k t, s)
OXn Okn "_*J _ '

(32) _Q_O)(k,t,s)k_ OUr 0 G(O)(k,t,s)}
Ox,, Ok,_

Nonzero contributions to production are possible from terms which contain the combination SQ (1).

These terms will contibute production of dissipation terms proportional to quadratic invariants of the mean

velocity gradient SijSij and WijWij where Wij is the antisymmctric part of the mean velocity gradient. For

example, the third term in Eq. (15) contributes

p_ = [i+ _ i_]SOp(k)P(p)Q(1)(q)Q(O)(k)

(33) = [i ÷ _ I_]S02p(k)P(p)SQ(O)(q)Q(O)(k)

where indices have been dropped. The second power of O in Eq. (33) arises from the time integration

in Eq. (32) required to express Q(1) in terms of Q(0). The contribution to P6 of Eq. (33) differs from a

contribution from the quasi-normal terms only in the factors of O. Since these factors scale like k -2/3, they

do not introduce any high wavenumbcr divergence, and we find that in terms of single-point quantities, they

contribute

2

(34) P_ _ KS 2 _,, -_ uVU

where VU 2 denotes terms quadratic in the mean velocity gradient. These terms must be proportional to the

invariants S_jSij or to WijWij



The occurrence of terms proportional to W, jWij in Eq. (34) would lend theoretical support to the

procedure of 'sensitizing to irrotational strains' introduced by Hanjalid and Launder (1980). Since such

a term cannot appear in energy production PK, wc conclude that PK and Pc may not be related by the

proportionality

(35) P_ = C_I S_-PK
K

Further evidence againstthe proportionalityof Eq. (35) occurs ifthe seriesfor P_ istaken to higher

ordcr in VU by substitutingthe higherorder terms inLeslic'sexpansion Eq. (32) inEq. (29).The result,

E 2

(36) Pe = v_{O(VU) -{- KO(_U)3 +...}
E

can be compared term by term with the result of substituting Yoshizawa's (1984) expansion of the Reynolds

stress in the definition of energy production,

= v{O(VV) 2 + KO(VU)3 +...}(37) PK

Thcrc is no reason to anticipate term-by-term equality of thc series in braces in Eqs. (36) and (37).

Evaluating Eq. (33) using the descriptors Eq. (15) of strongly rotating turbulence leads to the scaling

E 2

(38) Pc "_ _-leVU2 "" _v(D)VU

wherc v(g_) denotes the rotation-dependent viscosity with the strong rotation limit Eq. (18).

5. Interpolation Formulas. In principle, the series expansions of u, De and Pc, in positive powers

of _ following Shimomura and Yoshizawa (1986) for weak rotation, and in negative powers of D for strong

rotation, can bc continued to arbitrary order. The problem arises to interpolate rationally between these

limits to obtain a model valid at intermediate rotation rates. Thus, for the turbulent viscosity, wc could

propose a series of approximations of Pad6 type for eddy viscosity

K 2 1 }I/2
(39) _ = c_-[-{1+ ci(nK/_)_

K 2 1 + DI(_K/e) 2 1/2
(40) v = C_-_- { 1 + CI(nK/E) 2 + C2(nK/_)4 }

which reduce to the usual eddy viscosity formula with O(fl) corrections for low rotation rates, and to the

limiting form given by Eq. (18) for strong rotation. The constants Ci and Di could be determined in

principle by matching to the high and low rotation rate expansions constructed above. The corresponding

interpolation formulas for De follow by analogy.

Interpolation formulas can also be proposed for subgrid scale viscosity including additional production

or stabilization mechanisms modeled as Richardson number effects. For example, for rotating turbulence

with added centrifugal stabilization or destabilization, we could set

(41) v = CsA2S2V/1 - Rie{ S 2 + n2/(1 - Rie) } -1/2

where, repeating the definition given earlier in Eq. (27),

Ri, -= C'Rs-2 U _---_(rU) =- _C'RS-217V(17V - _)



Thisformulageneralizesthesubgridscalemodelforstrongrotation,Eq. (25),to arbitraryrotationrates.
Younis(1997)hasobservedthatthelowestorderinterpolation,Eq. (39),whenusedwithanalogsforD_

and P_ does not prove satisfactory in computations. At moderate rotation rates, the reduction in e brought

about by the modified dissipation rate transport equation causes the leading factor K2/g in v to increase,

unless the constant C1 is made sufficiently large. Only when f_ is asymptotically large does the factor in

braces become small enough to reduce the turbulent viscosity.

This defect may be due to the property of Eq. (39) that the strong rotation limit fixes the constant C1,

which then also determines the rotation correction in the weak rotation limit. It appears that these limits

are not consistent. The more complex model of Eq. (40) may be more satisfactory, but further investigation

is essential in order to at least suggest the size of the constants.

This observation recalls a fact noted earlier: stabilization of turbulence is sometimes treated empirically

as an increase in the dissipation rate c, because this increase will reduce the (unmodified) turbulent viscosity

K2/g. From our viewpoint, the stabilization of turbulence by rotation means that energy transfer is blocked;

therefore, the dissipation rate E must decrease. But this decrease does not incorrectly enhance the eddy

viscosity, because the eddy viscosity is also modified by rotation according to Eq. (18).

6. Conclusions. The extension of the direct interaction approximation to rotating turbulence following

the suggestions of Zhou (1995) makes possible a rational derivation of a dissipation rate transport equation

and subgrid scale models for strongly rotating turbulence. Empirical turbulence modeling is unable to

produce these results because rotation precludes simple dimensional arguments from determining the correct

form of the modelled equations.
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